中国混凝土网
当前位置: 首页 » 技术 » 应用技术 » 正文

偶联剂在环氧树脂胶粘耐磨涂层中的应用(上)

放大字体  缩小字体 发布日期:2010-05-20  来源:中国混凝土网  作者:中国环氧树脂与固化剂网
核心提示:偶联剂在环氧树脂胶粘耐磨涂层中的应用(上)

摘要:为了获得改性环氧树脂粘接SiC颗粒钢基表面复合涂层的优异性能,试验采用偶联剂KH-550来改善材料的复合界面。结果表明:一定量的偶联剂KH-550可显著地提高改性环氧树脂胶粘SiC耐磨涂层的粘接强度(包括剪切强度、拉伸强度及弯曲强度)及耐磨性,并确定出了改性环氧树脂胶粘SiC耐磨涂层中KH-550的最佳加入量为3.3%及较好的使用方法为迁移法。 

    [关键词]偶联剂KH-550;耐磨涂层;粘接强度;耐磨性;改性环氧树脂;碳化硅 

    0引言 

    冲蚀磨损是较为常见的磨损形式之一,占常出现的磨损破坏总数的8%[1]。其广泛存在于现代工业生产中,如水轮机叶片、泥浆泵以及混凝土和沥青搅拌机中的搅拌叶片和护板的磨损等。因此,选择一种简单、快速、费用低、效果好的能防止及修复零部件磨损的工艺十分重要。以改性环氧树脂为粘接剂,添加陶瓷颗粒而成的复合材料,固化后具备了优异的耐冲蚀磨损性能[1],将其作为耐磨涂层材料应用于各类过流部件的表面,其涂覆工艺简单,成本低廉,无热影响区及变形。这种复合材料除了可用于零件表面耐腐蚀、耐磨损的预置涂层及零件腐蚀磨损表面的修复之外,还广泛用于修补工件上的各种缺陷如裂纹、划伤、尺寸超差及铸造缺陷等[2-9]。此共混体系当且仅当各有机相之间、无机填料及骨架材料表面与所接触的有机相之间牢固地粘合在一起,材料才能显示出良好的性能。为了改进界面之间的粘接,就需要一种界面交联剂,称为偶联剂。在环氧树脂胶粘剂中,最成熟和最实用的就是有机硅烷偶联剂,本试验应用的KH-550就属此类偶联剂,其表面能γc与环氧树脂粘接剂的表面能γ之间满足良好偶联效果必备条件:γ≥γ[10]。 

    有机硅烷偶联剂常用的使用方法有如下几种[8-10]:1)表面处理法。将质量分数为0.5%~1.0%的偶联剂配制成95%的乙醇溶液,使用时加入填料中并搅拌均匀,晾干后再在120~160°C下烘30min,然后冷却至室温即可。此法有利于偶联剂的均匀分散,可以在较短的时间内实现对填料表面的有机化处理。2)迁移法。将所选用的硅烷偶联剂按胶粘剂干胶量的1%~5%计,直接加到胶粘剂组分中去。在固化过程中,由于分子的扩散作用,偶联剂分子迁移到被粘接材料表面。3)对填料直接处理。4)把偶联剂加到环氧/填料混合体系中。后两种方法的缺点是不利于偶联剂的均匀分散,故在本实验中,笔者选用前两种使用方法处理碳化硅颗粒,并用超声波分散。 

    着重研究了在环氧胶粘涂层中加入偶联剂KH-550对共混体系粘接强度(包括剪切强度、拉伸强度及弯曲强度)、耐磨性的影响,以便确定在胶粘涂层中较好的使用方法及最佳加入量。 

    1试验 

    1.1试验材料 

    本试验所采用的环氧胶粘涂层的基本配方为: 

    A组分:基料环氧树脂E-44/E-51=1/1,10.0g;增韧剂聚氨酯预聚体,2.0g;少许有机硅油消泡剂。 

    B组分:固化剂改性胺T31,2.0g;固化促进剂DMP30,0.5g。 

    1.2试样的制备及测试方法 

    本试验的试验方案见表1。为了确定改性环氧树脂与钢及SiC粒子间的粘接强度,分别测定了改性环氧树脂与钢间的剪切强度和拉伸强度,以及改性环氧树脂粘接SiC粒子间的弯曲强度。剪切试样为50mm×20mm×3mm的片状试样,将2片试样搭接,中间充填改型环氧树脂,环氧树脂固化后进行剪切强度测定。拉伸试样为20mm×50mm的圆柱试样,将2个圆柱试样端部对接,中间充填3mm后的改型环氧树脂,环氧树脂固化后进行拉伸性能测定。按照表1所示组分和混料顺序混合好原料后,分别制备10mm×10mm×40mm和20mm×20mm×10mm的试样,固化后进行弯曲强度和冲蚀磨损耐磨性测定。 


偶联剂在环氧树脂胶粘耐磨涂层中的应用

  注:原料加入顺序环氧树脂+增韧剂+偶联剂+SiC+固化剂+促进剂。按照表1制备1~10号试样。熟化一段时间后浇注在处理好的模具中。 

    剪切强度、拉伸强度及弯曲强度用试样为3组,在万能试验机上测定并最终取3组结果的平均值。 

    冲蚀试验在实验室自制冲蚀磨损实验机上进行,参数为:冲蚀速度为11m/s,浆料浓度为8%,磨料粒度为20~30目,冲蚀角度选用60°,冲蚀时间为45min/次,共冲蚀3次,取平均值。材料冲蚀磨损耐磨性用材料每单位时间(1min)的失重量δ来表示:磨损率δ=试样的失重量/时间。 

    2试验结果及分析 

    2.1KH-550对基本配方粘接强度的影响(见图1) 

    由图1可以看出:在偶联剂使用方法为表面处理法时,所得的弯曲强度不仅强度很低,杂乱无章,而且在KH-550添加量为0时,弯曲强度最高,这也否定了偶联剂的作用。出现这个现象的原因可能是在硅烷偶联剂溶液处理SiC过程中,KH-550缓慢水解缩合而失去与表面作用的能力。相比较1~5号与6~10号,在偶联剂的使用方法上,迁移法更实用一些。


偶联剂在环氧树脂胶粘耐磨涂层中的应用

    KH-550的加入提高了胶粘涂层粘接强度,使2种不同表面性质的材料结合成牢固的整体,并且随着KH-550加入量的增加,粘接强度———剪切、拉伸、弯曲强度都呈现一种趋势:先增大直至最高值,然后降低。具体为:当KH-550加入量为4.9%时,剪切强度达到最高值30.96MPa,性能提高(相比0%时)达915.1%。当加入量为3.3%时,拉伸强度与弯曲强度都达到最高值,分别为27.18MPa与71.34MPa,性能分别提高达262.9%与19.2%;此时,剪切强度也达到了25.97MPa,性能提高达751.5%。综上所述:8号试样(迁移法KH-550使用量为3.3%)的综合粘接性能最优。 

    偶联剂的加入之所以显著提高胶粘涂层粘接强度是与它的结构有关[6]。偶联剂KH550的结构式为:H2NCH2CH2CH2Si(OC2H5)3(γ-氨丙基三乙氧基硅烷),它的最大特点是分子中包含有性质不同的2个基团,一个是亲无机物基团—OC2H5,它水解形成硅醇,易与无机材料(如金属材料或填料)起化学反应生成硅氧烷;另一个是亲有机物基团—NH2,它能与有机合成材料(如基料)起反应。有机硅烷偶联剂在2个不同材料界面的偶联过程,是1个复杂的液-固表面物理化学过程,即浸润-取向-交联过程。由于偶联剂黏度低、表面张力小,对金属等无机材料的表面接触角很小,所以在它与无机材料的表面上,可以迅速铺展开来,使其被偶联剂润湿。

  又由于空气中的极性固体材料表面上总吸附着1层薄薄的水,所以一旦偶联剂表面被浸润,分子两端的基团便分别向极性相近的表面扩散。一端的—Si(OH)3基团取向于无机材料表面,同时与取向表面的水分子等发生水解缩聚,产生化学交联;有机官能团—NH2则向有机树脂表面取向,在固化中与胶粘剂中的相应官能团进行化学交联,使之完成异相表面间的偶联过程[6]。

 
 
[ 技术搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 违规举报 ]  [ 关闭窗口 ]

 

 
推荐企业

©2006-2016 混凝土网版权所有

地址:上海市杨浦区国康路100号国际设计中心12楼 服务热线:021-65983162

备案号: 沪ICP备09002744号-2 技术支持:上海砼网信息科技有限公司

沪公网安备 31011002000482号