摘要:通过分析透水性沥青混凝土路面的特性及优点,结合工程应用实例对透水性沥青混合料的材料选择、配合比、施工工艺等方面进行尝试与探讨。实践证明,在城市道路中采用透水性沥青面层技术可行、设计简易、施工方便,且工程费用增加不大,在我国南方多雨地区有较强的现实意义和推广价值。
关键词:城市道路;透水性沥青面层;设计;配合比;施工;杭州市
0 前言
透水性沥青混凝土,与一般沥青混合料相比,特点是空隙率较大、大粒径骨料含量较多,沥青为高温热稳定性好、粘结性强的高粘度改性沥青。因此透水性沥青混凝土具有一些优良的路用性能: (1) 透水性路面可以避免雨天路面积水形成水膜,提高路面抗滑性能; (2) 减小路面反光,改善路面标志的可见度,改善车辆行驶的安全性和舒适性; (3) 吸收车辆行驶产生的噪音,有利于创造安静舒适的交通环境。此外,使用透水性材料铺设具有排水性的道路,可以减轻集中降雨季节道路排水系统的负担;有助于补充城市地下水资源,保持土壤湿度,增加城市透水、透气面积,调节城市气候,降低地表温度,改善城 市环境,保持生态平衡。
透水性沥青混凝土路面(OGFC) 在我国还处于发展起步阶段,目前尚无完整的设计施工规范及验收指标。笔者在杭州市庆春路整治工程设计中,参考国外相关技术标准,对透水性路面的结构设计、沥青混合料的材料选择、配合比、施工工艺等方面进行了尝试,希望能与同行一起交流、共同探讨,为我国透水性沥青混凝土路面的发展积累经验。
1 工程概况
庆春路地处杭州市中心繁华地带, 全长约4km ,红线宽40 m ,是杭州市传统的商业服务街,也是联系西湖景区与城市东部的主要通道。无论从商业功能还是交通功能上讲,庆春路都是杭州市中心区十分重要的东西向城市主干道。市委、市政府为缓解杭城交通“两难”、进一步改善城市环境、提升城市品位,提出“一纵三横”四条道路综合整治的目标及要求,为提高雨天行车的安全性,降低交通噪音、防止路面积水、改善道路环境,在庆春路整治中采用透水性沥青混凝土面层。
2 路面结构设计
透水路面按其排水方式可分为全透式路面和半透式(排水式) 路面。全透式要求面层、基层、垫层相应具有良好的透水性能,并提供足够的力学强度,才可以保证路面雨水迅速下渗至自然土基,起到透水性道路的真正作用,国外主要应用于停车场、广场、人行道及轻交通道路。半透式则仅要求上面层具有透水性能,下设隔水层,路表下渗水通过道路纵横坡汇入盲沟、盲管进行收集,接至雨水井。
庆春路作为老路改造工程,现状路面结构为水泥混凝土与沥青混凝土面层形式间隔分布,在加罩透水性沥青混凝土面层时,由于原下层结构均无透水性,因此,针对工程实际情况,仅加铺透水性面层,设计为半透式路面。
设计时,对现状水泥混凝土路面段适当加高约10 cm ,采用5 cm AC-16 Ⅰ中粒式沥青混凝土+ 5cm OGFC-13 透水沥青混凝土进行沥青罩面;对沥青路面段仅铣刨原结构层中的细粒式沥青面层,采用5 cm OGFC-13 透水沥青混凝土重新进行罩面。
半透式路面设计需重点考虑下渗水的排除和避免对下部结构层的影响,因此,设计时,须在透水性面层下喷洒橡胶乳化沥青隔水层,下层采用中粒式沥青混凝土密级配结构,并按照上面层的要求进行施工,严格控制平整度,保证排水迅速、通畅,避免因局部凹陷形成积水无法排除,引起下渗水对下部结构层的破坏。在道路平石边设置宽10 cm、深12 cm的盲沟(同道路纵坡) ,采用透水沥青混凝土填筑,埋设内径5 cm 的盲管(采用钢管打孔) 接入雨水口。盲沟周围喷洒橡胶乳化沥青,并铺设改性油毛毡用以防水。具体结构设计详见图1 。
0 透水性沥青混合料设计
透水性路面特有的多孔性对该混合料本身的力学强度有一定的影响,因此,为了保证混合料的多孔透水性和力学强度,关键就要选择正确的材料与合理的混合料配合比。
3. 1 材料选择
3. 1. 1 集料
透水性沥青混合料集料间断级配,粗集料含量大且粒径单一,细集料含量少,结构空隙率一般为18 %~22 % ,混合料的粗集料应采用质地坚硬,表面粗糙,形状接近立方体,有良好的嵌挤能力的破碎集料,其技术要求见表1 。
细集料宜选用机制砂,如使用石屑时,宜采用与沥青粘附性好的石灰岩石屑,且不得含有泥土、杂物。
填料必须是由石灰石等碱性岩石磨细的矿粉,推荐采用消石灰或水泥部分或完全取代矿粉。
3. 1. 2 沥青胶结料
配制透水性沥青混合料应采用高粘度改性沥青。沥青应具有较小的针入度、较高的软化点和粘度,应有较好的抗裂性,避免沥青面层低温开裂。具体指标见表2 。
3. 1. 3 纤维
配制透水性沥青混合料应掺加纤维稳定剂提高混合料的沥青用量,以提高混合料的耐久性能。
3. 2 混合料配合比设计
透水性沥青混合料的配比应根据混合料生产、运输、抗磨耗飞散要求及目标空隙率确定。配比设计应按以下步骤进行:
(1) 根据实际要求,选择混合料的目标空隙率。
(2) 选择集料种类,其物理力学性能指标应符合防滑面层的相关规定。
(3) 选择沥青的种类,并根据沥青与集料的粘附性,确定是否掺加抗剥落剂。
(4) 对现行规范中的防滑面层集料级配进行调整。根据空隙率与集料中粒径在4. 75 mm 以下集料的质量通过率的关系,确定其通过率范围。
(5) 4. 75 mm 的通过率对混合料的空隙率和骨架嵌锁结构有很大影响,应严格加以控制。设计时将粒径4. 75 mm 以下集料的质量通过率范围等分成四部分,构成四种集料级配。在相同沥青质量分数下(取5. 0 %) ,分别测定四种级配的透水性沥青混合料的矿料间隙率VMA ,并绘出VMA 与粒径4. 75mm 以下的集料的质量通过率的关系图。在图中找出VMA的拐点,若该点的VMA 值大于17 %,则将与此拐点对应的粒径为4. 75 mm 集料的质量通过率作为采用的级配值。所选用集料级配见表3 。
(6) 根据集料比表面积与沥青膜厚的关系,确定最佳沥青膜厚所需要的沥青用量。对混合料进行滴落试验和磨耗试验,绘出滴落损失率和集料磨耗损失率与沥青用量的关系图,确定最佳沥青用量。
(7) 对混合料空隙率VV 和矿料间隙率VMA 进行检验。若VMA小于17 %或者VV小于规定范围,
则需重新调整级配。
(8) 对透水性沥青混合料进行各项性能试验,包括马歇尔稳定度检验、残留稳定度试验、劈裂试验、老化试验、车辙试验及透水试验。若性能指标达不到要求,则需调整级配或改变结合料类型,检测指标见表4 。4 拌制、运输及摊铺施工
(1) 正式拌制前,应对确定的配合比和级配进行室内试拌与拌和机试拌,验证最佳沥青用量与混合料质量指标是否符合规定。试拌确定最佳用量后,拌和中应严格按量称取沥青用量,沥青用量在拌和过程中变化范围不大于±0. 3 %。
(2) 沥青混合料拌制时温度宜在170 ℃~185 ℃。同时,应通过试拌确定混合时间。
(3) 混合料运输时间宜尽可能缩短,运输过程中应采取保温措施,确保混合料摊铺温度不低于165 ℃。当温度低于160 ℃时,混合料应废弃。
(4) 排水沥青下面应铺设封层防止渗水。排水沥青混合料摊铺应采用机械摊铺,要求摊铺平整,不宜人工修整,摊铺速度应控制在约3 m/ min ,摊铺温度宜控制在175 ℃~165 ℃。
(5) 碾压时,压路机距离摊铺机不宜过长。初碾、二次碾压宜选用10~12 t 滚筒式压路机,终碾宜选用6~10 t 多轮式压路机或8~15 t 胶轮式压路机。碾压应采用静压方式,其方法与一般沥青混凝土面层相同。初碾速度宜控制在2 km/ h ,温度应控制在160 ℃~140 ℃,复碾速度宜控制在3 km/ h ,终碾速度宜控制在2 km/ h ,温度应控制在90 ℃~70 ℃。
(6) 铺筑面层时,需对透水管进行保护,避免沥青混合料堵塞透水管孔眼,确保透水性路面结构中的雨水能顺畅地排至透水管。两侧排水边沟应有足够的坡度,确保排至边沟的雨水能够迅速排出。
(7) 沥青混合料碾压成型后,应避免车辆进入,直至终压4 h 后或表面温度低于50 ℃,且足够坚硬后方可开放交通。
5 管理与养护
(1) 透水性沥青混凝土面层质量保证期为1 a ,期间须具备应用同质透水性沥青混凝土材料用于及时养护维修的能力。
(2) 透水性沥青混凝土面层道路养护应注意及时清除路面存在的粘土类抛洒物,应采用专门的冲洗和吸出设备,定期对路面积尘物质进行清除,以保证路面的空隙率。
(3) 透水性沥青混凝土面层道路设计年限内,应严格控制道路开挖,5 a 内禁止条带形开挖。
(4) 透水性混凝土路面层道路应避免发生可能导致隔水层被破坏的行为,如钉入、钻孔等,如有发生,应及时采取可靠修复措施。
(5) 尽可能避免导致空隙覆盖或堵塞的行为,如路面热熔性不透水交通标志标线的现场变换、堆放沙土、拌和混凝土等。
6 质量验收及检测结果
为指导透水路面的施工,统一技术标准,杭州市建委组织各相关部门专家制定了《“一纵三横”道路整治工程排水沥青混凝土面层(OGFC) 技术规定(CJ S 0122005) 》。根据其技术要求,对透水性沥青混合料进行了研制,通过试验段检测后,调整确定混合料配合比,在工程中进行铺筑。应用后的实测数据表明,路面空隙率为20 % ±2 % ,渗水系数在2 000ml/ 15 s 上下,远大于目标的900 ml/ 15 s 的透水性能指标。在经受几次大雨考验后,透水性沥青路面表面不存在水膜,未发生过雨大行车安全事故,至今路面平整、粗糙、坚实。
7 结语