摘要:使用日本的净浆流动度检验方法—— T 法流动度,对10 种高效减水剂与5 种水泥之间的相容性进行了交叉试验,旨在考察水泥与高效减水剂的相容性结果是否具有统计学的规律。结果显示,在本试验抽取样品范围内,无论是多个高效减水剂对水泥的相容性,还是多个水泥对高效减水剂的相容性,均具有很好的一致性,即相容性较差的高效减水剂对所有水泥的相容性均相对较差;相容性较差的水泥对所有高效减水剂的相容性均相对较差。
0 引言
随着混凝土技术的发展,高效减水剂在混凝土中的应用越来越广泛。水泥与高效减水剂的相容性是水泥生产厂家十分关注的问题,对此已有许多研究[1~7]。以往的研究所使用的高效减水剂和水泥样品的数量十分有限,无法判断某种水泥对多种高效减水剂和某种高效减水剂对多种水泥的相容性。本文选取了5 个水泥样品和10 个高效减水剂样品,对水泥与多种高效减水剂的相容性进行了交叉试验,以期得到一些令人关注的具有统计学意义的结果。
1 试验材料及方法
1.1 试验材料
水泥:在华北、东北地区的市场上抽取4 个大型 预分解窑水泥厂生产的硅酸盐水泥和普通硅酸盐水泥样品,和1 个符合GB/T 8077—2000 要求的基准水泥。化学成分见表1,物理性能见表2。水泥1、水泥3 为P·Ⅱ 42.5R 水泥,水泥2、水泥4 为P·O 42.5R 水泥,水泥5 为基准水泥。
高效减水剂:在华北、东北地区的预拌混凝土搅拌站抽取了4 个高效减水剂样品;中国外加剂协会提供3 个样品;外加剂生产厂家提供2 个样品;1 个日本花王公司高效减水剂( 萘系) 样品,是日本用于进行水泥与高效减水剂相容性试验的基准减水剂。所用高效减水剂样品均为液体。编号JP 为日本基准高效减水剂,编号1、2、6 为聚羧酸高效减水剂,编号3、4、5、7 为萘系高效减水剂,编号8 为氨基磺酸盐高效减水剂,编号9 为三聚氰胺高效减水剂。
1.2 试验方法
目前国内评价高效减水剂与水泥的相容性较多采用GB/T8077—2000《混凝土外加剂匀质性试验方法》中规定的水泥净浆流动度法。但笔者的另一项研究表明[8],该方法与混凝土的流变性能没有很好的相关性。因此,本文采用了日本的T 法流动度试验方法,其原理与GB/T 8077—2000 的方法相同,在日本被广泛用于检验水泥与高效减水剂的相容性。出于沿用日本方法规定的考虑,不同种类的高效减水剂掺入量没有区别对待。该方法概述如下:
1)称取1000.0g 水泥样品,放入搅拌锅中。称取12.00g 减水剂和288.0g 水放入300ml 烧杯中,搅拌均匀。
2)将减水剂溶液一次加入水泥中,开始计时,用搅拌勺手工搅拌2min。
3)搅拌好的水泥净浆放入已经置于流动度跳桌的流动度圆模中( 圆模为截锥形,上口Φ70mm,下口Φ100mm,高度60mm) ,用直尺刮平流动度圆模中的水泥净浆。
4) 2.5min 时将流动度圆模轻轻提起,并在水泥净浆上面停留10s。将流动度圆模上的水泥净浆放回搅拌锅。
5) 4min 时,以1 次/s 的速度转动流动度跳桌跳动转盘,连续跳动15 次。立即使用游标卡尺测定互相垂直的2 个方向的水泥净浆的直径,精确到1mm。
6)计算2 次水泥净浆直径的平均值。此数值为初始流动度。
7)用橡胶刮板将流动度跳桌上的水泥净浆全部回收到搅拌锅内,并用湿布苫盖存放。
8)11min 时将水泥净浆搅拌1min。
9) 12min 时起按照上述步骤3) ~6) 的操作方法和时间间隔,测定水泥净浆的经时流动度。
10) 残存率计算方法:
残存率(%) =( 经时流动度/初始流动度) ×100%
2 试验结果与讨论
使用5 个水泥样品,10 个高效减水剂,共进行50 个T 法流动度试验,结果见表3。
2.1 不同水泥的净浆初始流动度各高效减水剂对应不同水泥的净浆初始流动度
表3 最下一行的平均值表明,净浆初始流动度平均值最大的是水泥3 和水泥4,均为370mm;其次是水泥1,为335mm;最小的是水泥2,为284mm。对比图1 同一高效减水剂时各水泥净浆流动度的高低,水泥3 有4 种高效减水剂的水泥净浆初始流动度为最高值,有5 种高效减水剂为次高值,1 种高效减水剂为中间值;水泥4 有6 种高效减水剂的水泥净浆初始流动度为最高值,有3 种高效减水剂为次高值,1 种高效减水剂为中间值;水泥2 对于9 种高效减水剂的水泥净浆初始流动度为最低值,1 种高效减水剂为次低值。
按初始流动度这一指标评价,5 种水泥对于10 种高效减水剂的相容性均表现了很好的一致性,相容性好的水泥基本上对每一种高效减水剂均表现相对较好的相容性,相容性差的水泥对每一种高效减水剂均表现相对较差的相容性。对于同一种聚羧酸高效减水剂,不同水泥的相容性差别相对较小,证实了聚羧酸高效减水剂具有较广泛的适应性。
2.2 不同水泥的净浆经时流动度
各高效减水剂对应不同水泥的净浆经时流动度对比如图2 所示。
表3 最下一行的平均值表明,经时流动度平均值最大的是水泥4,为392mm;最小的是水泥5,为285mm。
对比图2 同一高效减水剂各水泥净浆流动度的高低,水泥4 有9 种高效减水剂的净浆经时流动度为最高值,有1 种高效减水剂接近次高值;水泥5 有8 种高效减水剂的净浆经时流动度为最低值或接近最低值,有1 种高效减水剂为中间值。按经时流动度这一指标评价,5 种水泥对于10 种高效减水剂的相容性均表现了很好的一致性,相容性好的水泥对每一种高效减水剂均表现相对较好的相容性,相容性差的水泥基本上对每一种高效减水剂均表现相对较差的相容性。与初始流动度比较,不同水泥对同一高效减水剂的经时流动度差别较大。
2.3 不同水泥的净浆流动度残存率
各高效减水剂对应的不同水泥的净浆流动度残存率对比如图3 所示。
残存率与混凝土的保塑性相关。残存率≥100% 表示该水泥新拌混凝土的流变性能不会在短时间内变差,<100%则相反。与初始流动度和经时流动度比较,残存率没有呈现出明显的规律性。表3 最下一行的平均值表明,水泥1、水泥2 和水泥4 的残存率基本接近,均>100%,水泥3 和水泥5 的残存率接近,均<100%。水泥2 对于3 种聚羧酸高效减水剂均呈现了很好的保塑性,水泥4 对多数高效减水剂都呈现了较好的保塑性,特别是对于氨基磺酸盐和三聚氰胺高效减水剂表现了很好的保塑性。
按残存率这一指标评价,试验结果提示水泥与高效减水剂的相容性有可能存在一一对应的关系。2.4 不同高效减水剂的水泥净浆初始流动度各水泥对应不同高效减水剂的净浆初始流动度如图4 所示。
表3 初始流动度平均值一列数据显示,各种高效减水剂对应的水泥净浆的初始流动度平均值差别显著。初始流动度平均值最大的是1 号高效减水剂,为443mm;其次为2 号高效减水剂,为416mm;初始流动度平均值最小的是9 号高效减水剂,为292mm;次小值是7 号高效减水剂,为309mm。
对比图4 同一水泥对应不同高效减水剂的净浆初始流动度的高低,1 号高效减水剂有4 种水泥的净浆初始流动度为最高值,有1 种水泥为次高值;9 号高效减水剂有3 种水泥的净浆初始流动度为最低值,有2 种水泥为次低值。
按初始流动度这一指标评价,10 种高效减水剂对5 种水泥的相容性均表现了较好的一致性,相容性好的高效减水剂对每一种水泥均表现相对较好的相容性,相容性差的高效减水剂对每一种水泥均表现相对较差的相容性。
对于同一种水泥,不同高效减水剂对水泥的净浆初始流动度差别较大。不同高效减水剂之间质量差别明显,聚羧酸高效减水剂具有优秀的减水效果得到证实。
2.5 不同高效减水剂的水泥净浆经时流动度
各水泥对应不同高效减水剂的净浆经时流动度如图5 所示。
表3 经时流动度平均值一列数据显示,各种高效减水剂对应的水泥净浆经时流动度平均值差别显著。经时流动度平均值最大的是2 号高效减水剂,为468mm;其次为1 号高效减水剂,为419mm;最小的是9 号高效减水剂,为280mm;次小值是7 号高效减水剂,为286mm。
对比图5 同一水泥对应不同高效减水剂的净浆经时流动度的高低,2 号高效减水剂有3 种水泥的净浆经时流动度为最高值,有1 种水泥接近次高值;9 号高效减水剂有4 种水泥的净浆经时流动度为最低值,有1 种水泥接近次低值。
按经时流动度这一指标评价,10 种高效减水剂对5 种水泥的相容性均表现了较好的一致性,相容性好的高效减水剂对每一种水泥均表现相对较好的相容性,相容性差的高效减水剂对每一种水泥均表现相对较差的相容性。
与初始流动度比较,对于同一种水泥,不同高效减水剂对水泥的经时流动度规律性较差。对于10 种高效减水剂按初始流动度和经时流动度的评价结论基本一致。
2.6 不同高效减水剂的水泥净浆流动度残存率
各水泥对应不同高效减水剂的净浆流动度残存率如图6 所示。
表3 残存率平均值一列数据显示,残存率平均值最高的是6 号高效减水剂,为116.8%,最低的是7 号高效减水剂,为92.8%。
对比图6 同一水泥对应不同高效减水剂的净浆流动度残存率的高低,6 号高效减水剂有3 种水泥的残存率为最高值,1 种水泥为次高值。其余9 种高效减水剂对5 种水泥的残存率没有表现出明显的规律性。
按残存率这一指标评价,10 种高效减水剂对5 种水泥的相容性没有表现出很好的一致性,多数高效减水剂存在对水泥相容性的个体差异,并且这一差异的数值很大。2 号、6 号聚羧酸高效减水剂表现了较高的残存率,证实了聚羧酸高效减水剂具有很好的保塑性。
2.7 高相容性水泥与高相容性高效减水剂组合的初始流动度和经时流动度
表3 数据表明,按初始流动度评价的高相容性水泥是水泥3、水泥4,高相容性高效减水剂是1 号,水泥4 与1 号高效减水剂组合的初始流动度为499mm,水泥3 与1 号高效减水剂组合的初始流动度为459mm,分别为所有初始流动度试验数据的最高值和次高值。按经时流动度评价的高相容性水泥是水泥4,高相容性高效减水剂是2 号,二者组合的经时流动度为431mm,在所有经时流动度试验数据中处于较好水平。
2.8 低相容性水泥与低相容性高效减水剂组合的初始流动度和经时流动度
表3 数据表明,按初始流动度评价的低相容性水泥是水泥2,低相容性高效减水剂是9号,二者组合的初始流动度为247mm,为所有经时流动度试验数据的次低值。按经时流动度评价的低相容性水泥是水泥5,低相容性高效减水剂是9 号,二者组合的经时流动度为222mm,是所有经时流动度试验数据的最低值。
3 对试验结果的若干说明
1) 鉴于目前使用高效减水剂最为普遍的是预拌混凝土搅拌站,而预拌混凝土搅拌站很少使用立窑厂或小厂生产的水泥,因此,本次试验的水泥样品没有包括立窑或小厂生产的水泥。本文以外的试验证实,立窑或小厂生产的水泥对高效减水剂的相容性,较大型水泥厂的水泥有明显差距。
2) 不同种类的高效减水剂具有不同的饱和掺入量,试验时如果使用该类高效减水剂的饱和掺入量或接近饱和掺入量,得到的T 法流动度数据可能会使不同种类减水剂的区别更加明显。本文为了得到多个水泥和不同种类高效减水剂的统计性试验结果,同时考虑今后试验方法的标准化,采用了统一的高效减水剂掺入量,且小于饱和掺入量。
4 结论
1) 以初始流动度和经时流动度评价,5 种水泥对于10 种高效减水剂的相容性表现了很好的一致性,在本试验抽取的样品范围内,相容性好的水泥,对每一种高效减水剂均表现相对较好的相容性;相容性差的水泥,对每一种高效减水剂均表现相对较差的相容性。
2) 以初始流动度和经时流动度评价,10 种高效减水剂对5 种水泥的相容性表现了很好的一致性,在本试验抽取的样品范围内,相容性好的高效减水剂,对每一种水泥均表现相对较好的相容性;相容性差的高效减水剂,对每一种水泥均表现相对较差的相容性。
3) 以初始流动度和经时流动度评价,不同水泥对于同一种高效减水剂的相容性差别较小,不同高效减水剂对于同一种水泥的相容性差别较大。高效减水剂对相容性的影响,高于大型预分解窑水泥厂水泥对相容性的影响。聚羧酸高效减水剂的减水效果明显高于萘系、三聚氰胺和氨基磺酸盐类高效减水剂。
4) 以残存率评价,没有得到相容性方面具有规律性的结论,并且提示,在保塑性方面有可能存在水泥与高效减水剂一一对应的关系。